مقایسه عملکرد ماشین بردار پشتیبان با سایر مدل‌های هوشمند در شبیه‌سازی فرآیند بارش- رواناب

نویسندگان

  • ازانی, عاطفه
  • قربانی, محمدعلی
  • نقی پور, لیلا
چکیده مقاله:

     Simulation of rainfall-runoff process is a major step in water engineering studies and water resources management. In this study, the rainfall-runoff process of the Siminehroud monthly (1377-1390) were simulated using Support Vector Machines (SVM)  with Radial Basis kernel Function, Polynomial and linear Bayesian Network (BN) with a PC Learning Algorithm, also conventional methods such as Artificial Neural Networks (ANNs) and Gene Expression Programming (GEP) were used; finally, the results were compared with each other. Correlation Coefficient (CC), Root Mean Square Error (RMSE) and Nash-Sutcliff coefficient (NS) were used to evaluate the performance of the models. The results indicate the acceptable performance of the models and GEP model shows the highest CC (CC = 0.91), minimum RMSE (RMSE = 1.3 m3/s) and NS = 0.82 in verification stage.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه عملکرد ماشین بردار پشتیبان با سایر مدل های هوشمند در شبیه سازی فرآیند بارش- رواناب

شبیه­سازی فرآیند بارش- رواناب به عنوان مهم­ترین گام در مطالعات مهندسی آب و مدیریت منابع آب است. در این تحقیق فرآیند بارش- رواناب ماهانه سیمینه­رود در دوره آماری (1390-1377) با استفاده از مدل­های ماشین بردار پشتیبان با توابع کرنل پایه شعاعی، چندجمله­ای و خطی، مدل شبکه بیزی با الگوریتم یادگیری pc و نیز مدل­های متداول شبکه عصبی مصنوعی و برنامه­ریزی بیان ژن شبیه­سازی شده و نتایج آن­ها مورد مقایسه ق...

متن کامل

ارزیابی مدل حداقل مربعات ماشین بردار پشتیبان در برآورد تبخیر و مقایسه با مدلهای تجربی

در این تحقیق با استفاده از پارامترهای هواشناسی در دشت بیرجند در استان خراسان جنوبی در دوره 16 ساله به ارزیابی عملکرد آزمون گاما و مقایسه دقت مدل‌های حداقل مربعات ماشین­بردار و روش‌های تجربی به‌منظور تخمین میزان تبخیر پرداخته شد.  با استفاده از روش آزمون گاما از میان پارامترهای تأثیرگذار بر تبخیر، پارامترهای بهینه ورودی جهت مدل‌سازی تخمین تبخیر از میان 90 ترکیب معین، تعیین گردید. تعداد 7 ترکیب ب...

متن کامل

کاربرد شبکه‌های عصبی بیزین، ماشین بردار پشتیبان و برنامه‌ریزی بیان ژنی در تحلیل بارش – رواناب ماهانه (مطالعه موردی:رودخانه کاکارضا)

     شبیه‌سازی فرآیند بارش - رواناب اولین و مهمترین گام برای کنترل سیلاب در مدیریت منابع آب می‌باشد. در این تحقیق  فرآیند بارش – رواناب  ماهانه رودخانه کاکارضا واقع در استان لرستان، با استفاده از شبکه عصبی بیزین موردبررسی قرار گرفت و نتایج آن با روش‌های برنامه‌ریزی بیان ژن و ماشین بردار پشتیبان مقایسه گردید. بر این اساس ترکیب‌های مختلفیبا استفاده از پارامترهای بارندگی و رواناب، طی دوره آماری (1...

متن کامل

پیش‌بینی رواناب روزانه با مدل حداقل مربعات ماشین بردار پشتیبان (LS-SVM)

مدل‌های داده محور از جمله ابزارهایی هستند که به منظور شبیه‌سازی در علوم مختلف استفاده می‌شوند. روش ماشین بردار پشتیبان به عنوان یکی از جدیدترین این نوع ابزارها اخیراً در علوم مرتبط با آب مورد توجه قرار گرفته است. در هیدرولوژی و منابع آب، این مدل‌ها با شبیه‌سازی فرآیند بارش-رواناب، مقدار رواناب را در حوزه‌های آبخیز بدون ایستگاه اندازه‌گیری و با حداقل زمان ممکن و کمترین هزینه برآورد می‌کنند. هدف ا...

متن کامل

مدل سازی رواناب رودخانه صوفی چای با استفاده از ماشین بردار پشتیبان و شبکه عصبی مصنوعی

Accurate simulation runoff process can have a significant role in water resources management and related issues. The inherent complexity of  this process makes difficult the use of physical and numerical models. In recent years, application of intelligent models is increased a powerful tool in hydrological modeling. The aim of this study was the application of the Gamma test to select the optim...

متن کامل

مقایسه مدلهای هوشمند در تخمین بارش ماهانه حوضه کاکارضا

برآورد بارش برای اجرای طرح های مطالعات منابع آب، خشک‌سالی، طرح های آمایش سرزمین، محیط زیست، آبخیزداری و طرح های جامع کشاورزی ضروری می باشد. در این پژوهش جهت تخمین بارش ماهانه دشت کاکارضا واقع در استان لرستان از مدل برنامه ریزی بیان ژن استفاده شد و نتایج آن با سایرروشهای هوشمند از جمله سیستم استنتاج فازی_عصبی و شبکه عصبی مصنوعی مقایسه گردید. برای این منظور از پارامترهای میانگین دما، رطوبت نسبی، ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 7  شماره 13

صفحات  103- 92

تاریخ انتشار 2016-07

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023